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A Simple Method for Computing the Resonant
Frequencies of Microstrip Ring Resonators

SOTIRIOS G. PINTZOS, MEMBER, IEEE, ~ REINHOLD PREGL~ MEMBER, IEEE

Abstruct-A simple and efficient method for the computation of the

resonant frequencies of nderostrip ring resonators is presented. By means

of the “reaction concept” a stationary formuta for the resonant frequency
of these resonators is derived. In this context a suitable approximation for
the current distribution on the strip pertahdng to the dondnant mode has
been made. The nomerical results are in excellent agreement with experi-
mental data cmroborating the accuracy of the presented method.
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I. INTRODUCTION

M ICROSTRIP resonators of various forms have be-

come indispensable elements of today’s microwave

integrated circuits. They are used either as single compo-

nents, i.e., as frequency determining parts of oscillator

circuits, or in coupled form for the realization of filters,

couplers, and other microwave circuits. Their practical

importance suggests the development of methods of anal-

ysis which, by making use of appropriate analytical and

numerical means, lead to accurate results for relevant

parameters. Up to date the analysis of microstrip resona-

tors has been carried out either on the basis of simplified

models of the real structure (“model of magnetic walls”)

[7], [8] or by imbedding the resonator in a closed wave-

guide to circumvent the intrinsic analytical difficulties of

open waveguiding structures [4], [6]. The procedure first

mentioned is, of course, of limited applicability, where the

second can be numerically very expensive and, because of

its very nature, cannot take into account the influence of

radiation effects.

This paper deals with open rnicrostrip ring resonators of

which the resonant frequency will be determined. In the

following, a relatively simple and numerically inexpensive

nonetheless efficient method of analysis will be given

based on the so-called stationary principle. This principle

has been utilized successfully in the case of the straight

microstripline [2]. Experimental data will be compared

with the numerical results in order to test the accuracy of

the present method.
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Fig. 1. Microstrip ring resonator with cylindrical coordinate system.

II. METHOD OF AwwYsIs

The structure under investigation is shown in Fig. 1.

The substrate material is supposed to be linear, isotropic,

and loss free. The strip and ground plate are ideal conduc-

tors. Further, it is assumed that the thickness of the strip

is negligible. The method of analysis presented here is

based on the variational or stationary principle. By means

of the well-known “reaction concept” of electromagnetic

theory [1], a stationary expression for the quantity to be

determined, i.e., the resonant frequency for the don@a~t

mode, will be established. The reaction of a field E=, Ha

on a source ~b, Mb in a volume V is defined as

(a,b) = ~ (E”.~b - Ha. fib)dV. (1)
v

In the case of a resonant structure, the self-reaction

<a, a), the reaction of the field on its own source, is zero

because the true field at resonance is source free. An
approximate expression for the self-reaction can be de-
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Fig. 2. Microstrip ring resonator with equivalent source.

rived using either a trial field or a trial source or both. It

can be shown that by equating this expression to the

correct reaction, a stationary formula for the resonant

frequency of the structure under consideration can be

obtained [9]. Now, according to the statements of both the

uniqueness and equivalence theorems and in order to

facilitate the fo~mulation of our problem, the Huygens’

source J,= Z X H at the plane z = t is introduced, as de-

picted in Fig. 2. In our case we are going to use a trial

current distribution on the strip. Thus the field associated

with such a current can be considered as a trial field as

well. Hence, the starting point for our analysis is the

expression

(a,a) = ~ E,, “~,~dV=O. (2)
v

The index tr means “trial.”

III. FIELD REPRESENTATION

The field existing in the structure shown in Fig. 1 can

~e expressed in+terms of two Cartesian vector potentials

A = ii=TE and F= ilzVH by means of the following rela-

tions:

1
i?= –rot F+ - rot rot A+

J&J60Cr
(3)

1
21=rot~+- rot rot i.

J@/lo
(4)

The scalar potentials *E, *H satisfy the Helmholtz equa-

tion:

AVE + k~VE = O

A*H + kf+H = O

where

k;= k;c,i

and i = 1,2 designates the subregions

(5a)

(5b)

(6)

1 (substrate) and 2

(air), respectively. A is the Laplace operator in cylindrical

coordinates and k. the wavenumber in vacuum. Assuming

that the azimuthal dependence of the field is given by

harmonic functions h~(n+) and taking into account that

the geometry under consideration is infinite in radial

direction, we represent the solution of (5) in the form of

Fourier–Bessel integrals.

~:(~,f#,Z) = h:(n+). ~m~~l(kP).kPJ.( kP. p).hfl(yiz).dkP
o

(7a)

q?~(p, @,Z) = h$(n~)” fm~fli(kP)”kPJn (kP”p)”h~(yiz)”dkP
o

(7b)

where

Y,2+ kz2 = k;, i=l,2 (8a)

and h=,,(yiz) are harmonic functions expressing the z de-

pendence of the field. They have to be chosen according

to the boundary conditions to be satisfied at z = O and the

radiation condition at Z++ co.

The potentials * for the particular regions are to be

formulated as follows.

In dielectric:

W~(p,@,z) = sin (n+)” ~mAn(kO). cosh (ylz)-kP”Jn(kPp) dkP

(8b)

TH(p, @,z) = cos (n+)~mB~(kP) sinh (ylz)kPJ~(kPp)dkP
o

(8c)

Y;+ k;~r = k:. (9)

In air:

VE(p,@,z) = sin (n~)~ ~ Cn(kp)e “’(=- ‘JkPJ.(kPp) dk,
o

(lOa)

~~(p,+,z) =COS (n@)~mD~(kP)e-’Z(z -f)kPJn(kPp)dkP
o

(lOb)

y;+ k;= k;. (11)

The next step is to derive the field components needed

for the formulation of the boundary conditions at the

interface z = t. These conditions yield the equations neces-

sary for determining the coefficients A., B., C., D. in terms

of the current distribution at z = t. The continuity condi-

tions at the interface z = t are as follows:

E p, 1= Ep,z (12a)

E +,1= E+,z (12b)

Hp, *– Hpj2=–l+(p,*) (13a)

Ho, ~– H$,z = ~P(p,@) (13b)

where lP(p, $) an~ Z@(p,q) are the components of the sheet

current density J. m p and q direction, respectively.
The field components derived from (8) and (10) by

means of (3) and (4) are now inserted in (12) and (13).

This leads to a system of equations in the p domain. In

order to obtain the final system for the unknowns

A., B., C., D. they have to be transformed into the kP

domain by means of the Hankel transform. This task can

be facilitated by first unifying the order of the Bessel

functions under the integral sign. Appropriate rearrange-

ment of the p-domain equations and application of the

recurrence relations for Bessel functions leads to the equa-

tions given in the Appendix. Hankel-transforming these
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equations and making use of the orthogonality relation-

ship

we arrive finally at the following system of linear equa-

tions for An, Bn, Cn, Dn:

Y] Sinh (Y1~) jqf, sinh (ylt) Y2% –j@e&

yl sinh (ylt) –j6X& Sinh (ylt) Y2% jtiocr

– k, cosh (ylI) –
ylkP cosh (ylt) y2&

k, –—
ju~ jto~ 1

k, cosh (ylt) –
y]kP cosh (Ylt) _ k yzkP——

ju~ P ju~
I

“:I
An(k,)
Bn(kP)

Cn(k,) =

Dn(kp)

where

o
0

Tp,n_, +T+,n_,

Tp,n+l–f+,n+,

~,(kpp)dp

(15)

(16)

(17)

are the Hankel transforms of order n t 1 of the p-depen-

dent parts of the sheet current components I@(p, +) and

‘p(P> +)> ‘esPectivelY.

The solution of (15) is as follows:

1 Yzer Z-,–J.+,
An(k,) = – – —

2 k. cosh (ylt)(yz/ko e, + yl/ko tafi (Y#))

(18a)

B~(kP)= _ ; & Fn–, +fn+,

% sinh (ylt)(yz/ko+ yl/ko coth (yIt))

(18b)

(~~-..l~+l)l) tanh (ylt)
(18c)c~(kP)= + ~ (yz/ko ~+yl/ko tanh (Ylt))

‘~(kP) = – ; ~ (y2/ko:y;;l::o:h (Y]t)) (18d)

where

-’{(~_171nw1=kP ‘@n-lfl+.+l)+(TPj.-177 Pn+l)}o

(19)

III. THE STATIONARY EXPRESSION FOR THE

RESONANT FREQUENCY

After having expressed the coefficients An, B., C., and

D. in terms of the Hankel-transformed current distribu-

tion at the interface z= t, we now proceed to derive the

stationary formula for the eigenvalue of the resonant

structure under consideration starting from (2). Carrying

out the integration over @ and z, the integral in (2)1

becomes

(20)’

where i = 1 or 2.

In the following we shall neglect the p component of the

current on the grounds that in the case of the microstrip-

line the transverse component of current is essentially

smaller than the longitudinal component. Because the ring,

resonator can be thought of as a line resonator bent to a

ring, this result is surely applicable to the ring resonator

on the condition that the ratio w/ri does not become very

large. Finally we have

Now the @-independent part of E+,i is evaluated at z = t

and inserted in (21). Assuming the validity of interchang-

ing the order of integration and recalling the definition of

Hankel transformation we then obtain

2
w

J[

Y1Y2 tafi (Y1t)(~@,n-I +~~,n~l )

o y2c, + yl tanh (ylt)

– k: (T@,~-&O+l~ k dk _O (22)

I
Y2+Y1 coth (Ylt) ‘“ ‘– “

This simple formula is the characteristic equation for

the eigenvalue k. (i.e., the resonant frequency). A similar

formula has been derived for straight microstrips [3]. k. is,

of course, a complex quantity because of radiation losses

which are inherent to open resonant structures. Here we

are only interested in the real part of this quantity. As far

as the integration contour in the complex kp plane is

concerned, the real axis has been chosen as a matter of

convenience. The choice of the sign of the two-valued

function y2
‘T

k; – k; must comply with the require-

ments of the radiation condition.

IV. CHOICE OF CURRENT DISTRIBUTION AND

NUMERICAL RESULTS

The criteria underlying the choice of the trial current

distribution may now be discussed. In the case of the

microstripline the approximation of the current distribu-

tion (longitudinal component) by the function which de-

scribes the static charge distribution on the strip has

proven to be an appropriate choice [2]. Now evoking the

resemblance of current distribution for the dominant

mode of the microstripline and ring resonator, we ade-

quately may approximate the current distribution at z = t

(Fig. 1) by the following expression:
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Fig. 3. Resonant frequency of microstrip ring resonator versus the
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(23)

where

rm= ;(ri+ r=). (24)

Unfortunately, there does not exist the Hankel trans-

form of this function in the form of an analytical expres-

sion. Thus the integration required to obtain ~~,,(kP) has

to be performed numerically, essentially increasing the

computational effort. The very good agreement of results

obtained by using the approximation in (23) with results
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Fig. 5. Resonant frequency characteristic of microstrip resonator for

different values of the structural parameter w/t.
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Fig. 6. Resonant frequency characteristic of microstrip ring resonator.
n is the azimuthal resonance order.

arrived at using a constant distribution, at least for not

very wide strips, finally led to the choice of the latter for

our calculations, taking into account that in this case the

Hankel transform can be given directly. The adequateness

of this choice can be demonstrated by the very good

agreement of calculated and measured results, as shown in

Figs. 3, 4, and 6. The solution of (22) is obtained using a
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simple iterative method (regzda jidsi). To numerically

evaluate the improper integral (22) an appropriate upper

integration limit has to be determined. Taking into

account that the integrand asymptotically decays as

0(kP-3), values for the upper integration limit have been

chosen according to this behavior.

The measurements have been performed using reflexion

type resonators. The width of the coupling gap was

0,1,... ,0,4 mm. The materials used for the measurements

are AIZ03 with c,= 9.85 and Duroid with e,= 2.35. Their

dielectric constants were measured according to the

method given in [12].

V. CONCLUSION

A simple and accurate method based on the stationary

principle is given for the computation of the resonant

frequencies of microstrip ring resonators. Although crude

approximations of the current distribution can be made,

the numerical results are in excellent agreement with the

experimental data. Because of the numerical inexpensive-

ness of this method reliable design charts for relevant

parameters can be quickly established. It is obvious that

(20) transformed into the k, domain can also be used to

compute the resonant frequency of microstrip disc resona-

tors provided that suitable approximations for the current

components in azimuthal and radial direction can be

made.

APPENDIX

+~m~n(kp)k:Jn-l( kpP)dkp. (Al)

[9]

[10]

813

-JmJn(kp)cosh(Yl~)k:Jn-l(kpP)dkp

-&~@Bn(kp)Y2.co5h(Y lt).k:Jn-l(kp.P). dkp

+~mcn(kp).k:Jn-~ (kp-~)dkp-J&

~ .(,)‘D k .yz.k$.J._l(kP. p).dkP= lP(p)+~$(P).

(A3)

jm~n(kp)cOsh(y,f)k:Jn+,(kp~)dkp
o

-&&mh cosh(~l~)k;Jn+l( k,P)dk.

-Jmcn(kp)k;Jn+,( kpP)dkp-,*

J@Dn(kp)Y2~3Jn+*(kpP)dkp=~p(P)-~,(P).

(A4)

[1]

[2]

[3]

[4]

[5]
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