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A Simple Method for Computing the Resonant
Frequencies of Microstrip Ring Resonators

SOTIRIOS G. PINTZOS, MEMBER, IEEE, AND REINHOLD PREGLA, MEMBER, IEEE

Abstract—A simple and efficient method for the computation of the
resonant frequencies of microstrip ring resonators is presented. By means
of the “reaction concept” a stationary formula for the resonant frequency
of these resonators is derived. In this context a suitable approximation for
the current distribution on the strip pertaining to the dominant mode has
been made. The numerical results are in excellent agreement with experi-
mental data corroborating the accuracy of the presented method.

I. INTRODUCTION

ICROSTRIP resonators of various forms have be-

come indispensable elements of today’s microwave
integrated circuits. They are used either as single compo-
nents, i.e., as frequency determining parts of oscillator
circuits, or in coupled form for the realization of filters,
couplers, and other microwave circuits. Their practical
importance suggests the development of methods of anal-
ysis which, by making use of appropriate analytical and
numerical means, lead to accurate results for relevant
parameters. Up to date the analysis of microstrip resona-
tors has been carried out either on the basis of simplified
models of the real structure (“model of magnetic walls™)
[7], [8] or by imbedding the resonator in a closed wave-
guide to circumvent the intrinsic analytical difficulties of
open waveguiding structures [4], [6]. The procedure first
mentioned is, of course, of limited applicability, where the
second can be numerically very expensive and, because of
its very nature, cannot take into account the influence of
radiation effects.

This paper deals with open microstrip ring resonators of
which the resonant frequency will be determined. In the
following, a relatively simple and numerically inexpensive
nonetheless efficient method of analysis will be given
based on the so-called stationary principle. This principle
has been utilized successfully in the case of the straight
microstripline [2]. Experimental data will be compared
with the numerical results in order to test the accuracy of
the present method.
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Fig. 1. Microstrip ring resonator with cylindrical coordinate system.

II. METHOD OF ANALYSIS

The structure under investigation is shown in Fig. 1.
The substrate material is supposed to be linear, isotropic,
and loss free. The strip and ground plate are ideal conduc-
tors. Further, it is assumed that the thickness of the strip
is negligible. The method of analysis presented here is
based on the variational or stationary principle. By means
of the well-known “reaction concept” of electromagnetic
theory [1], a stationary expression for the quantity to be
determined, i.e., the resonant frequency for the dominant
mode, will be established. The reaction of a field E7, H*
on a source JZ, M? in a volume V is defined as

(a,by= f (Ea-Jb— HoM"b)dV. (1)
14

In the case of a resonant structure, the self-reaction

{a,a), the reaction of the field on its own source, is zero

because the true field at resonance is source free. An

approximate expression for the self-reaction can be de-
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Fig. 2. Microstrip ring resonator with equivalent source.

rived using either a trial field or a trial source or both. It
can be shown that by equating this expression to the
correct reaction, a stationary formula for the resonant
frequency of the structure under consideration can be
obtained [9]. Now, according to the statements of both the
uniqueness and equivalence theorems and in order to
facilitate the formulation of our problem the Huygens’
source J =7x H at the plane z=¢ is introduced, as de-
picted in Fig. 2. In our case we are going to use a trial
current distribution on the strip. Thus the field associated
with such a current can be considered as a trial field as
well. Hence, the starting point for our analysis is the
expression

(a,ay=[ E Jodv=0. @

The index tr means “trial.”

I1.

The field existing in the structure shown in Fig. 1 can
be expressed in terms of two Cartesian vector potentials
A= ¥F and F=u %" by means of the following rela-
tions:

FIELD REPRESENTATION

E=—r10t F+ 1 rot rot A (3)
JWEGE,
H=rtot A+ — 1 rot rot F, 4
JWiko

The scalar potentials W& ¥ satisfy the Helmholtz equa-
tion:

AVE + K2PE=0 (52)
AVH + [29H =0 (5b)

where
k7= ke, (6)

and i=1,2 designates the subregions 1 (substrate) and 2
(air), respectively. A is the Laplace operator in cylindrical
coordinates and k, the wavenumber in vacuum. Assuming
that the azimuthal dependence of the field is given by
harmonic functions /,(n¢) and taking into account that
the geometry under consideration is infinite in radial
direction, we represent the solution of (5) in the form of
Fourier—Bessel integrals.

\Ile(p’ ¢,Z) = hf(nd)) j; T,f.t(kp)'k,cv']n(kp.f))'}lzﬁ(yt'z)'d]c,¢>

(7a)
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fo,0.2)= ' (ng): [k, )y, (ko) bl
(7b)

where
yE+kI=kZ  i=12 (8a)

and #, ,(y;z) are harmonic functions expressing the z de-
pendence of the field. They have to be chosen according
to the boundary conditions to be satisfied at z=0 and the
radiation condition at z— 4+ o0.

The potentials ¥ for the particular regions are to be
formulated as follows.

In dielectric:

VE(p,b,2) =sin (n¢)- fo A,(k,) cosh (v,2)-k,-T,(k,p) dk,

(8b)
¥ (p,¢,2) =cos (ng) [ B,(k,) sinh (1,2)k,, (k,p) dk,
(8¢)
Yi+ kg = k. ©)
In air:
¥E(p,9.2)=sin (n9) [~ C, (ke)e ™70k, (k,p) dk,
(10a)
¥ (p.9,2) =cos (n9) [ D, (k, e "0k, J, (k) i,
(10b)
Y3+ ki=k2 (11)

The next step is to derive the field components needed
for the formulation of the boundary conditions at the
interface z = t. These conditions yield the equations neces-
sary for determining the coefficients 4,, B,, C,, D, in terms
of the current distribution at z=1t. The continuity condi-
tions at the interface z=1¢ are as follows:

E,\=E,, (12a)
E,\=E,, (12b)
H,,—H, ,=—1,(p,0) (132)
H,\—H,,=1I(p,9) (13b)

where I (p,¢) and I(p,¢) are the components of the sheet
current density J; in p and ¢ direction, respectively.

The field components derived from (8) and (10) by
means of (3) and (4) are now inserted in (12) and (13).
This leads to a system of equations in the p domain. In
order to obtain the final system for the unknowns

B,,C,,D, they have to be transformed into the k,
domain by means of the Hankel transform. This task can
be facilitated by first unifying the order of the Bessel
functions under the integral sign. Appropriate rearrange-
ment of the p-domain equations and application of the
recurrence relations for Bessel functions leads to the equa-
tions given in the Appendix. Hankel-transforming these
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equations and making use of the orthogonality relation-
ship

[ (ip)odo =—=a(k,~k)) (14

Vkpkp

we arrive finally at the following system of linear equa-
tions for 4,,B,,C,,D,:

nisinh (v7)  Jjoee sinh (vy1) v, —jeees, |
yisinh (y;f)  —jwege, sinh (v,7) Ya€, Juwege,
_ Y1k, cosh (y,¢) Y2k,
k, cosh (v,?) Jeame k, oty
k_cosh (vt k
k, cosh (y,r) - M -k, - ?’2 £
J Wk J Wk
4,(k,) 0
B\ o (15)
Cn(kp) _p,n—l + —qs,n—l
Dn(kp) Ip,n+l_-1¢,n+l
where
Lnsi(k)= [ LGl ilkpp)do  (16)
Lonsalky)= [ 10Tk p)dp (17)

are the Hankel transforms of order n+1 of the p-depen-
dent parts of the sheet current components 7,(p,$) and

1 (p,¢), respectively.
The solution of (15) is as follows:

A(k)=—l Y25, I_n—l_I_n+l
e 2 ko cosh (v,1)(v2/ ko &+ v1/ko tanh (v,2))
(182)
ik I_+1I
Bn(kp)=_i_0 . n—1 n+1
2 wey sinh (v,2)(v2/ ko+v1/ ko coth (v,1))
(18b)
I _,—1I.,)tanh (y,¢
Cn(kp)"_" _1_1_1_ ( n—1 n+1) a (Yl ) (ISC)
2 ko (v2/ ko €+7v,/k, tanh (y,7))
Pk I +1
J ™o n—1T 14
D(k)=—=— (18d)
( p) 2 wey (v2/ko+v1/ ko coth (v,2))
where
I_n-lxI_n+l=kp_l{(1_¢,n—li1_¢n+l)+(ip n—1+ —p n+1)}‘
(19
III. TaE STATIONARY EXPRESSION FOR THE
RESONANT FREQUENCY
After having expressed the coefficients 4,, B,, C,, and

D, in terms of the Hankel-transformed current distribu-
tion at the interface z=1¢, we now proceed to derive the
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stationary formula for the eigenvalue of the resonant
structure under consideration starting from (2). Carrying
out the integration over ¢ and z, the integral in (2)
becomes

T Eailo 2= 01,60+ E, (.2 = )1, () Jodp=0
(20)

where i=1 or 2,

In the following we shall neglect the p component of the
current on the grounds that in the case of the microstrip-
line the transverse component of current is essentially
smaller than the longitudinal component. Because the ring
resonator can be thought of as a line resonator bent to a
ring, this result is surely applicable to the ring resonator
on the condition that the ratio w/r; does not become very
large. Finally we have

o0
S, Eoio.2=01,0)pdp=0. (21)
Now the ¢-independent part of E, ; is evaluated at z=1
and inserted in (21). Assuming the validity of interchang-
ing the order of integration and recalling the definition of
Hankel transformation we then obtain

- - 2
fOO 'YIY2 tanh (Ylt)(1¢,n—1+1¢,n+l)
0 Y26+ v, tanh (v,7)

- 2
2(1¢,n—1_1¢,n+l)
% y,+ v, coth (v,7)

k,-dk,=0. (22)

This simple formula is the characteristic equation for
the eigenvalue k, (i.e., the resonant frequency). A similar
formula has been derived for straight microstrips [3). &, is,
of course, a complex quantity because of radiation losses
which are inherent to open resonant structures. Here we
are only interested in the real part of this quantity. As far
as the integration contour in the complex k, plane is
concerned, the real axis has been chosen as a matter of
convenience. The choice of the sign of the two-valued

function 72=Vkﬁ —k3 must comply with the require-
ments of the radiation condition.

IV. CHoicke oF CURRENT DISTRIBUTION AND
NUMERICAL RESULTS

The criteria underlying the choice of the trial current
distribution may now be discussed. In the case of the
microstripline the approximation of the current distribu-
tion (longitudinal component) by the function which de-
scribes the static charge distribution on the strip has
proven to be an appropriate choice [2]. Now evoking the
resemblance of current distribution for the dominant
mode of the microstripline and ring resonator, we ade-
quately may approximate the current distribution at z=1¢
(Fig. 1) by the following expression:
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Fig. 3. Resonant frequency of microstrip ring resonator versus the
mean radius 7,,. n is the azimuthal resonance order.
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Fig. 4. Resonant frequency of microstrip ring resonator versus the
mean radius 7,,. n is the azimuthal resonance order.

I, (0)= co(nst. ) (23)
2(p—r,) 1?
)
where
rw=3(r+1,). (24)

Unfortunately, there does not exist the Hankel trans-
form of this function in the form of an analytical expres-
sion. Thus the integration required to obtain I, ,(k,) has
to be performed numerically, essentially increasing the
computational effort. The very good agreement of results

obtained by using the approximation in (23) with results
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Fig. 6. Resonant frequency characteristic of microstrip ring resonator,
n is the azimuthal resonance order.

arrived at using a constant distribution, at least for not
very wide strips, finally led to the choice of the latter for
our calculations, taking into account that in this case the
Hankel transform can be given directly. The adequateness
of this choice can be demonstrated by the very good
agreement of calculated and measured results, as shown in
Figs. 3, 4, and 6. The solution of (22) is obtained using a
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simple iterative method (regula falsi). To numerically
evaluate the improper integral (22) an appropriate upper
integration limit has to be determined. Taking into
account that the integrand asymptotically decays as
O(kp'3), values for the upper integration limit have been
chosen according to this behavior.

The measurements have been performed using reflexion
type resonators. The width of the coupling gap was
0,1,---,0,4 mm. The materials used for the measurements
are ALO; with ¢ =9.85 and Duroid with ¢, =2.35. Their
dielectric constants were measured according to the
method given in [12].

V. CONCLUSION

A simple and accurate method based on the stationary
principle is given for the computation of the resonant
frequencies of microstrip ring resonators. Although crude
approximations of the current distribution can be made,
the numerical results are in excellent agreement with the
experimental data. Because of the numerical inexpensive-
ness of this method reliable design charts for relevant
parameters can be quickly established. It is obvious that
(20) transformed into the k, domain can also be used to
compute the resonant frequency of microstrip disc resona-
tors provided that suitable approximations for the current
components in azimuthal and radial direction can be
made.

APPENDIX

1 ® .
j(; An(kp)"YI'Slnh (‘Ylt)"]n—l(kp'p)'dkp

JWEGE,

+ fo B,(k,)-k2sinh (v,1)-J,_(k, p)-dk,
1

Jweg

oo
+ fo D, (k,)-k=J,_ (K, p)-dk,

o Cn(kp)OYZ'kZ.Jn— I(kp' p)dkp
(Al)

1
jw€0€r
)
= [ Bk, sinh ()3T, (ky o),
1

Jweg

= [ Duk K3, Ry p)

[ k) vresink (oK (ky o)k,

' j(; Cn(kp)"YZ.kz"In+l(kp.p).dkp

(A2)
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- fo A,(k,)-cosh (v,1)-k2J,_ (k- p)-dk,
1

Jopy Jo

[o0]
+ fo Colke,)k2d,_ (K, p)-dk, —

o0
Bn(kp)'YZ' COSh (Ylt)'kg"]n— l(kp'p).dkp

1

Joto

.L Dn(kp)“YZ'kz'Jn—l(kp.p)'dkp=Ip(p)+I¢(p)'

(A3)

S, Aak,)-cosh (vat) k2, (K, p)-dk,

(1]
2]

31

[4]
[5]
(6]

Y

(8]

9]

[10]

[11]
[12]

1 ]
—m o Bn(kp)“Yl cosh (alt)'kz.‘]n+l(kp.p)'dkp
Y A2 o)dk — —
'/(; Cn(kp) kp Jn+1(kp P) d o jwp‘O
]
j(; Dn(kp)‘Yz'kg'JH1(kp'P)'dkp=Ip(P)"Iqs(P)-

(A4)
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